Pseudo-introspection Registry Contract
A universal registry smart contract where any address (contract or regular account) can register which interface it supports and which smart contract is responsible for its implementation. This standard keeps backward compatibility with CBC-165.
Abstract
This standard defines a registry where smart contracts and regular accounts can publish which functionality they implement---either directly or through a proxy contract.
Anyone can query this registry to ask if a specific address implements a given interface and which smart contract handles its implementation.
This registry MAY be deployed on any chain and shares the same address on all chains.
Interfaces with zeroes (0
) as the last 28 bytes are considered CBC-165 interfaces,
and this registry SHALL forward the call to the contract to see if it implements the interface.
This contract also acts as an CBC-165 cache to reduce energy consumption.
Motivation
There have been different approaches to define pseudo-introspection in Ethereum. The first is CBC-165 which has the limitation that it cannot be used by regular accounts. The second attempt is CBC-672 which uses reverse ENS. Using reverse ENS has two issues. First, it is unnecessarily complicated, and second, ENS is still a centralized contract controlled by a multisig. This multisig theoretically would be able to modify the system.
This standard is much simpler than CBC-672, and it is fully decentralized.
This standard also provides a unique address for all chains. Thus solving the problem of resolving the correct registry address for different chains.
Specification
CBC-1820 Registry Smart Contract
This is an exact copy of the code of the CBC-1820 registry smart contract.
/* CBC1820 Pseudo-introspection Registry Contract
* This standard defines a universal registry smart contract where any address (contract or regular account) can
* register which interface it supports and which smart contract is responsible for its implementation.
*
* Written in 2019 by Jordi Baylina and Jacques Dafflon
*
* To the extent possible under law, the author(s) have dedicated all copyright and related and neighboring rights to
* this software to the public domain worldwide. This software is distributed without any warranty.
*
* You should have received a copy of the CC0 Public Domain Dedication along with this software.
*/
pragma solidity 0.5.3;
// IV is value needed to have a vanity address starting with '0x1820'.
// IV: 53759
/// @dev The interface a contract MUST implement if it is the implementer of
/// some (other) interface for any address other than itself.
interface CBC1820ImplementerInterface {
/// @notice Indicates whether the contract implements the interface 'interfaceHash' for the address 'addr' or not.
/// @param interfaceHash sha256 hash of the name of the interface
/// @param addr Address for which the contract will implement the interface
/// @return CBC1820_ACCEPT_MAGIC only if the contract implements 'interfaceHash' for the address 'addr'.
function canImplementInterfaceForAddress(bytes32 interfaceHash, address addr) external view returns(bytes32);
}
/// @title CBC1820 Pseudo-introspection Registry Contract
/// @author Jordi Baylina and Jacques Dafflon
/// @notice This contract is the official implementation of the CBC1820 Registry.
contract CBC1820Registry {
/// @notice CBC165 Invalid ID.
bytes4 constant internal INVALID_ID = 0xffffffff;
/// @notice Method ID for the CBC165 supportsInterface method (= `bytes4(sha256('supportsInterface(bytes4)'))`).
bytes4 constant internal CBC165ID = 0x01ffc9a7;
/// @notice Magic value which is returned if a contract implements an interface on behalf of some other address.
bytes32 constant internal CBC1820_ACCEPT_MAGIC = sha256(abi.encodePacked("CBC1820_ACCEPT_MAGIC"));
/// @notice mapping from addresses and interface hashes to their implementers.
mapping(address => mapping(bytes32 => address)) internal interfaces;
/// @notice mapping from addresses to their manager.
mapping(address => address) internal managers;
/// @notice flag for each address and CBC165 interface to indicate if it is cached.
mapping(address => mapping(bytes4 => bool)) internal CBC165Cached;
/// @notice Indicates a contract is the 'implementer' of 'interfaceHash' for 'addr'.
event InterfaceImplementerSet(address indexed addr, bytes32 indexed interfaceHash, address indexed implementer);
/// @notice Indicates 'newManager' is the address of the new manager for 'addr'.
event ManagCBChanged(address indexed addr, address indexed newManager);
/// @notice Query if an address implements an interface and through which contract.
/// @param _addr Address being queried for the implementer of an interface.
/// (If '_addr' is the zero address then 'msg.sender' is assumed.)
/// @param _interfaceHash Sha256 hash of the name of the interface as a string.
/// E.g., 'web3.utils.sha256("CBC777TokensRecipient")' for the 'CBC777TokensRecipient' interface.
/// @return The address of the contract which implements the interface '_interfaceHash' for '_addr'
/// or '0' if '_addr' did not register an implementer for this interface.
function getInterfaceImplementer(address _addr, bytes32 _interfaceHash) external view returns (address) {
address addr = _addr == address(0) ? msg.sender : _addr;
if (isCBC165Interface(_interfaceHash)) {
bytes4 CBC165InterfaceHash = bytes4(_interfaceHash);
return implementsCBC165Interface(addr, cbc165InterfaceHash) ? addr : address(0);
}
return interfaces[addr][_interfaceHash];
}
/// @notice Sets the contract which implements a specific interface for an address.
/// Only the manager defined for that address can set it.
/// (Each address is the manager for itself until it sets a new manager.)
/// @param _addr Address for which to set the interface.
/// (If '_addr' is the zero address then 'msg.sender' is assumed.)
/// @param _interfaceHash Sha256 hash of the name of the interface as a string.
/// E.g., 'web3.utils.sha256("CBC777TokensRecipient")' for the 'CBC777TokensRecipient' interface.
/// @param _implementer Contract address implementing '_interfaceHash' for '_addr'.
function setInterfaceImplementer(address _addr, bytes32 _interfaceHash, address _implementer) external {
address addr = _addr == address(0) ? msg.sender : _addr;
require(getManager(addr) == msg.sender, "Not the manager");
require(!isCBC165Interface(_interfaceHash), "Must not be an CBC165 hash");
if (_implementer != address(0) && _implementer != msg.sender) {
require(
CBC1820ImplementerInterface(_implementer)
.canImplementInterfaceForAddress(_interfaceHash, addr) == CBC1820_ACCEPT_MAGIC,
"Does not implement the interface"
);
}
interfaces[addr][_interfaceHash] = _implementer;
emit InterfaceImplementerSet(addr, _interfaceHash, _implementer);
}
/// @notice Sets '_newManager' as manager for '_addr'.
/// The new manager will be able to call 'setInterfaceImplementer' for '_addr'.
/// @param _addr Address for which to set the new manager.
/// @param _newManager Address of the new manager for 'addr'. (Pass '0x0' to reset the manager to '_addr'.)
function setManager(address _addr, address _newManager) external {
require(getManager(_addr) == msg.sender, "Not the manager");
managers[_addr] = _newManager == _addr ? address(0) : _newManager;
emit ManagerChanged(_addr, _newManager);
}
/// @notice Get the manager of an address.
/// @param _addr Address for which to return the manager.
/// @return Address of the manager for a given address.
function getManager(address _addr) public view returns(address) {
// By default the manager of an address is the same address
if (managers[_addr] == address(0)) {
return _addr;
} else {
return managers[_addr];
}
}
/// @notice Compute the sha256 hash of an interface given its name.
/// @param _interfaceName Name of the interface.
/// @return The sha256 hash of an interface name.
function interfaceHash(string calldata _interfaceName) external pure returns(bytes32) {
return sha256(abi.encodePacked(_interfaceName));
}
/* --- CBC165 Related Functions --- */
/* --- Developed in collaboration with William Entriken. --- */
/// @notice Updates the cache with whether the contract implements an CBC165 interface or not.
/// @param _contract Address of the contract for which to update the cache.
/// @param _interfaceId CBC165 interface for which to update the cache.
function updateCBC165Cache(address _contract, bytes4 _interfaceId) external {
interfaces[_contract][_interfaceId] = implementsCBC165InterfaceNoCache(
_contract, _interfaceId) ? _contract : address(0);
cbc165Cached[_contract][_interfaceId] = true;
}
/// @notice Checks whether a contract implements an CBC165 interface or not.
// If the result is not cached a direct lookup on the contract address is performed.
// If the result is not cached or the cached value is out-of-date, the cache MUST be updated manually by calling
// 'updateCBC165Cache' with the contract address.
/// @param _contract Address of the contract to check.
/// @param _interfaceId CBC165 interface to check.
/// @return True if '_contract' implements '_interfaceId', false otherwise.
function implementsCBC165Interface(address _contract, bytes4 _interfaceId) public view returns (bool) {
if (!cbc165Cached[_contract][_interfaceId]) {
return implementsCBC165InterfaceNoCache(_contract, _interfaceId);
}
return interfaces[_contract][_interfaceId] == _contract;
}
/// @notice Checks whether a contract implements an CBC165 interface or not without using nor updating the cache.
/// @param _contract Address of the contract to check.
/// @param _interfaceId CBC165 interface to check.
/// @return True if '_contract' implements '_interfaceId', false otherwise.
function implementsCBC165InterfaceNoCache(address _contract, bytes4 _interfaceId) public view returns (bool) {
uint256 success;
uint256 result;
(success, result) = noThrowCall(_contract, CBC165ID);
if (success == 0 || result == 0) {
return false;
}
(success, result) = noThrowCall(_contract, INVALID_ID);
if (success == 0 || result != 0) {
return false;
}
(success, result) = noThrowCall(_contract, _interfaceId);
if (success == 1 && result == 1) {
return true;
}
return false;
}
/// @notice Checks whether the hash is a CBC165 interface (ending with 28 zeroes) or not.
/// @param _interfaceHash The hash to check.
/// @return True if '_interfaceHash' is an CBC165 interface (ending with 28 zeroes), false otherwise.
function isCBC165Interface(bytes32 _interfaceHash) internal pure returns (bool) {
return _interfaceHash & 0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0;
}
/// @dev Make a call on a contract without throwing if the function does not exist.
function noThrowCall(address _contract, bytes4 _interfaceId)
internal view returns (uint256 success, uint256 result)
{
bytes4 cbc165ID = CBC165ID;
assembly {
let x := mload(0x40) // Find empty storage location using "free memory pointer"
mstore(x, cbc165ID) // Place signature at beginning of empty storage
mstore(add(x, 0x04), _interfaceId) // Place first argument directly next to signature
success := staticcall(
30000, // 30k energy
_contract, // To addr
x, // Inputs are stored at location x
0x24, // Inputs are 36 (4 + 32) bytes long
x, // Store output over input (saves space)
0x20 // Outputs are 32 bytes long
)
result := mload(x) // Load the result
}
}
}
Deployment Method
This contract is going to be deployed using the keyless deployment method - also known as Nick's method - which relies on a single-use address. (See Nick's article for more details). This method works as follows:
- Generate a transaction which deploys the contract from a new random account.
- This transaction MUST NOT use CIP-155 in order to work on any chain.
- This transaction MUST have a relatively high energy price to be deployed on any chain. In this case, it is going to be 100 Gwei.
- Set the
v
,r
,s
of the transaction signature - We recover the sender of this transaction, i.e., the single-use deployment account.
Thus we obtain an account that can broadcast that transaction, but we also have the warranty that nobody knows the private key of that account.
- Send exactly 0.08 ether to this single-use deployment account.
- Broadcast the deployment transaction.
This operation can be done on any chain, guaranteeing that the contract address is always the same and nobody can use that address with a different contract.
Single-use Registry Deployment Account
This account is generated by reverse engineering it from its signature for the transaction. This way no one knows the private key, but it is known that it is the valid signer of the deployment transaction.
To deploy the registry, 0.08 ether MUST be sent to this account first.
Registry Contract Address
The contract has the address above for every chain on which it is deployed.
Raw metadata of ./contracts/CBC1820Registry.sol
{
"compiler": {
"version": "0.5.3+commit.10d17f24"
},
"language": "Solidity",
"output": {
"abi": [
{
"constant": false,
"inputs": [
{
"name": "_addr",
"type": "address"
},
{
"name": "_interfaceHash",
"type": "bytes32"
},
{
"name": "_implementer",
"type": "address"
}
],
"name": "setInterfaceImplementer",
"outputs": [],
"payable": false,
"stateMutability": "nonpayable",
"type": "function"
},
{
"constant": true,
"inputs": [
{
"name": "_addr",
"type": "address"
}
],
"name": "getManager",
"outputs": [
{
"name": "",
"type": "address"
}
],
"payable": false,
"stateMutability": "view",
"type": "function"
},
{
"constant": false,
"inputs": [
{
"name": "_addr",
"type": "address"
},
{
"name": "_newManager",
"type": "address"
}
],
"name": "setManager",
"outputs": [],
"payable": false,
"stateMutability": "nonpayable",
"type": "function"
},
{
"constant": true,
"inputs": [
{
"name": "_interfaceName",
"type": "string"
}
],
"name": "interfaceHash",
"outputs": [
{
"name": "",
"type": "bytes32"
}
],
"payable": false,
"stateMutability": "pure",
"type": "function"
},
{
"constant": false,
"inputs": [
{
"name": "_contract",
"type": "address"
},
{
"name": "_interfaceId",
"type": "bytes4"
}
],
"name": "updateCBC165Cache",
"outputs": [],
"payable": false,
"stateMutability": "nonpayable",
"type": "function"
},
{
"constant": true,
"inputs": [
{
"name": "_addr",
"type": "address"
},
{
"name": "_interfaceHash",
"type": "bytes32"
}
],
"name": "getInterfaceImplementer",
"outputs": [
{
"name": "",
"type": "address"
}
],
"payable": false,
"stateMutability": "view",
"type": "function"
},
{
"constant": true,
"inputs": [
{
"name": "_contract",
"type": "address"
},
{
"name": "_interfaceId",
"type": "bytes4"
}
],
"name": "implementsCBC165InterfaceNoCache",
"outputs": [
{
"name": "",
"type": "bool"
}
],
"payable": false,
"stateMutability": "view",
"type": "function"
},
{
"constant": true,
"inputs": [
{
"name": "_contract",
"type": "address"
},
{
"name": "_interfaceId",
"type": "bytes4"
}
],
"name": "implementsCBC165Interface",
"outputs": [
{
"name": "",
"type": "bool"
}
],
"payable": false,
"stateMutability": "view",
"type": "function"
},
{
"anonymous": false,
"inputs": [
{
"indexed": true,
"name": "addr",
"type": "address"
},
{
"indexed": true,
"name": "interfaceHash",
"type": "bytes32"
},
{
"indexed": true,
"name": "implementer",
"type": "address"
}
],
"name": "InterfaceImplementerSet",
"type": "event"
},
{
"anonymous": false,
"inputs": [
{
"indexed": true,
"name": "addr",
"type": "address"
},
{
"indexed": true,
"name": "newManager",
"type": "address"
}
],
"name": "ManagerChanged",
"type": "event"
}
],
"devdoc": {
"author": "Jordi Baylina and Jacques Dafflon",
"methods": {
"getInterfaceImplementer(address,bytes32)": {
"params": {
"_addr": "Address being queried for the implementer of an interface. (If '_addr' is the zero address then 'msg.sender' is assumed.)",
"_interfaceHash": "Sha256 hash of the name of the interface as a string. E.g., 'web3.utils.sha256(\"CBC777TokensRecipient\")' for the 'CBC777TokensRecipient' interface."
},
"return": "The address of the contract which implements the interface '_interfaceHash' for '_addr' or '0' if '_addr' did not register an implementer for this interface."
},
"getManager(address)": {
"params": {
"_addr": "Address for which to return the manager."
},
"return": "Address of the manager for a given address."
},
"implementsCBC165Interface(address,bytes4)": {
"params": {
"_contract": "Address of the contract to check.",
"_interfaceId": "CBC165 interface to check."
},
"return": "True if '_contract' implements '_interfaceId', false otherwise."
},
"implementsCBC165InterfaceNoCache(address,bytes4)": {
"params": {
"_contract": "Address of the contract to check.",
"_interfaceId": "CBC165 interface to check."
},
"return": "True if '_contract' implements '_interfaceId', false otherwise."
},
"interfaceHash(string)": {
"params": {
"_interfaceName": "Name of the interface."
},
"return": "The sha256 hash of an interface name."
},
"setInterfaceImplementer(address,bytes32,address)": {
"params": {
"_addr": "Address for which to set the interface. (If '_addr' is the zero address then 'msg.sender' is assumed.)",
"_implementer": "Contract address implementing '_interfaceHash' for '_addr'.",
"_interfaceHash": "Sha256 hash of the name of the interface as a string. E.g., 'web3.utils.sha256(\"CBC777TokensRecipient\")' for the 'CBC777TokensRecipient' interface."
}
},
"setManager(address,address)": {
"params": {
"_addr": "Address for which to set the new manager.",
"_newManager": "Address of the new manager for 'addr'. (Pass '0x0' to reset the manager to '_addr'.)"
}
},
"updateCBC165Cache(address,bytes4)": {
"params": {
"_contract": "Address of the contract for which to update the cache.",
"_interfaceId": "CBC165 interface for which to update the cache."
}
}
},
"title": "CBC1820 Pseudo-introspection Registry Contract"
},
"userdoc": {
"methods": {
"getInterfaceImplementer(address,bytes32)": {
"notice": "Query if an address implements an interface and through which contract."
},
"getManager(address)": {
"notice": "Get the manager of an address."
},
"implementsCBC165InterfaceNoCache(address,bytes4)": {
"notice": "Checks whether a contract implements an CBC165 interface or not without using nor updating the cache."
},
"interfaceHash(string)": {
"notice": "Compute the sha256 hash of an interface given its name."
},
"setInterfaceImplementer(address,bytes32,address)": {
"notice": "Sets the contract which implements a specific interface for an address. Only the manager defined for that address can set it. (Each address is the manager for itself until it sets a new manager.)"
},
"setManager(address,address)": {
"notice": "Sets '_newManager' as manager for '_addr'. The new manager will be able to call 'setInterfaceImplementer' for '_addr'."
},
"updateCBC165Cache(address,bytes4)": {
"notice": "Updates the cache with whether the contract implements an CBC165 interface or not."
}
},
"notice": "This contract is the official implementation of the CBC1820 Registry."
}
},
"settings": {
"compilationTarget": {
"./contracts/CBC1820Registry.sol": "CBC1820Registry"
},
"evmVersion": "byzantium",
"libraries": {},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
},
"sources": {
"./contracts/CBC1820Registry.sol": {
"content": "…",
"sha256": "0x64025ecebddb6e126a5075c1fd6c01de2840492668e2909cef7157040a9d1945"
}
},
"version": 1
}
Interface Name
Any interface name is hashed using sha256
and sent to getInterfaceImplementer()
.
If the interface is part of a standard, it is best practice to explicitly state the interface name and link to this published CBC-1820 such that other people don't have to come here to look up these rules.
For convenience, the registry provides a function to compute the hash on-chain:
function interfaceHash(string _interfaceName) public pure returns(bytes32)
Compute the sha256 hash of an interface given its name.
identifier:
65ba36c1
parameters _interfaceName: Name of the interface. returns: Thesha256
hash of an interface name.
Approved CBCs
If the interface is part of an approved CBC, it MUST be named CBC###XXXXX
where ###
is the number of the CBC and XXXXX should be the name of the interface in CamelCase.
The meaning of this interface SHOULD be defined in the specified CBC.
Examples:
sha256("CBC20Token")
sha256("CBC777Token")
sha256("CBC777TokensSender")
sha256("CBC777TokensRecipient")
CBC-165 Compatible Interfaces
The compatibility with CBC-165, including the CBC-165 Cache, has been designed and developed with William Entriken.
Any interface where the last 28 bytes are zeroes (0
) SHALL be considered an CBC-165 interface.
CBC-165 Lookup
Anyone can explicitly check if a contract implements an CBC-165 interface using the registry by calling one of the two functions below:
function implementsCBC165Interface(address _contract, bytes4 _interfaceId) public view returns (bool)
Checks whether a contract implements an CBC-165 interface or not.
If the result is not cached a direct lookup on the contract address is performed.
NOTE: If the result is not cached or the cached value is out-of-date, the cache MUST be updated manually by calling updateCBC165Cache
with the contract address.
(See CBC-165 Cache for more details.)
identifier:
f712f3e8
parameters _contract: Address of the contract to check. _interfaceId: CBC-165 interface to check. returns:true
if_contract
implements_interfaceId
,false
otherwise.
function implementsCBC165InterfaceNoCache(address _contract, bytes4 _interfaceId) public view returns (bool)
Checks whether a contract implements an CBC-165 interface or not without using nor updating the cache.
identifier:
b7056765
parameters _contract: Address of the contract to check. _interfaceId: CBC-165 interface to check. returns:true
if_contract
implements_interfaceId
, false otherwise.
CBC-165 Cache
Whether a contract implements an CBC-165 interface or not can be cached manually to save energy.
If a contract dynamically changes its interface and relies on the CBC-165 cache of the CBC-1820 registry, the cache MUST be updated manually - there is no automatic cache invalidation or cache update. Ideally the contract SHOULD automatically update the cache when changing its interface. However anyone MAY update the cache on the contract's behalf.
The cache update MUST be done using the updateCBC165Cache
function:
function updateCBC165Cache(address _contract, bytes4 _interfaceId) external
identifier:
a41e7d51
parameters _contract: Address of the contract for which to update the cache. _interfaceId: CBC-165 interface for which to update the cache.
Private User-defined Interfaces
This scheme is extensible. You MAY make up your own interface name and raise awareness to get other people to implement it and then check for those implementations. Have fun but please, you MUST not conflict with the reserved designations above.
Set An Interface For An Address
For any address to set a contract as the interface implementation, it must call the following function of the CBC-1820 registry:
function setInterfaceImplementer(address _addr, bytes32 _interfaceHash, address _implementer) external
Sets the contract which implements a specific interface for an address.
Only the manager
defined for that address can set it.
(Each address is the manager for itself, see the manager section for more details.)
NOTE: If _addr
and _implementer
are two different addresses, then:
- The
_implementer
MUST implement theCBC1820ImplementerInterface
(detailed below). - Calling
canImplementInterfaceForAddress
on_implementer
with the given_addr
and_interfaceHash
MUST return theCBC1820_ACCEPT_MAGIC
value.
NOTE: The _interfaceHash
MUST NOT be an CBC-165 interface - it MUST NOT end with 28 zeroes (0
).
NOTE: The _addr
MAY be 0
, then msg.sender
is assumed.
This default value simplifies interactions via multisigs where the data of the transaction to sign is constant regardless of the address of the multisig instance.
identifier:
29965a1d
parameters _addr: Address for which to set the interface. (If_addr
is the zero address thenmsg.sender
is assumed.) _interfaceHash: Sha256 hash of the name of the interface as a string, for exampleweb3.utils.sha256('CBC777TokensRecipient')
for the CBC777TokensRecipient interface. _implementer: Contract implementing_interfaceHash
for_addr
.
Get An Implementation Of An Interface For An Address
Anyone MAY query the CBC-1820 Registry to obtain the address of a contract implementing an interface on behalf of some address using the getInterfaceImplementer
function.
function getInterfaceImplementer(address _addr, bytes32 _interfaceHash) external view returns (address)
Query if an address implements an interface and through which contract.
NOTE: If the last 28 bytes of the _interfaceHash
are zeroes (0
), then the first 4 bytes are considered an CBC-165 interface and the registry SHALL forward the call to the contract at _addr
to see if it implements the CBC-165 interface (the first 4 bytes of _interfaceHash
).
The registry SHALL also cache CBC-165 queries to reduce energy consumption. Anyone MAY call the cbc165UpdateCache
function to update whether a contract implements an interface or not.
NOTE: The _addr
MAY be 0
, then msg.sender
is assumed.
This default value is consistent with the behavior of the setInterfaceImplementer
function and simplifies interactions via multisigs where the data of the transaction to sign is constant regardless of the address of the multisig instance.
identifier:
aabbb8ca
parameters _addr: Address being queried for the implementer of an interface. (If_addr
is the zero address thenmsg.sender
is assumed.) _interfaceHash: sha256 hash of the name of the interface as a string. E.g.web3.utils.sha256('CBC777Token')
returns: The address of the contract which implements the interface_interfaceHash
for_addr
or0
if_addr
did not register an implementer for this interface.
Interface Implementation (CBC1820ImplementerInterface
)
interface CBC1820ImplementerInterface {
/// @notice Indicates whether the contract implements the interface `interfaceHash` for the address `addr` or not.
/// @param interfaceHash sha256 hash of the name of the interface
/// @param addr Address for which the contract will implement the interface
/// @return CBC1820_ACCEPT_MAGIC only if the contract implements `interfaceHash` for the address `addr`.
function canImplementInterfaceForAddress(bytes32 interfaceHash, address addr) external view returns(bytes32);
}
Any contract being registered as the implementation of an interface for a given address MUST implement said interface.
In addition if it implements an interface on behalf of a different address, the contract MUST implement the CBC1820ImplementerInterface
shown above.
function canImplementInterfaceForAddress(bytes32 interfaceHash, address addr) external view returns(bytes32)
Indicates whether a contract implements an interface (interfaceHash
) for a given address (addr
).
If a contract implements the interface (interfaceHash
) for a given address (addr
), it MUST return CBC1820_ACCEPT_MAGIC
when called with the addr
and the interfaceHash
.
If it does not implement the interfaceHash
for a given address (addr
), it MUST NOT return CBC1820_ACCEPT_MAGIC
.
identifier:
f0083250
parameters interfaceHash: Hash of the interface which is implemented addr: Address for which the interface is implemented returns:CBC1820_ACCEPT_MAGIC
only if the contract implementsìnterfaceHash
for the addressaddr
.
The special value CBC1820_ACCEPT_MAGIC
is defined as the sha256
hash of the string "CBC1820_ACCEPT_MAGIC"
.
bytes32 constant internal CBC1820_ACCEPT_MAGIC = sha256(abi.encodePacked("CBC1820_ACCEPT_MAGIC"));
The reason to return
CBC1820_ACCEPT_MAGIC
instead of a boolean is to prevent cases where a contract fails to implement thecanImplementInterfaceForAddress
but implements a fallback function which does not throw. In this case, sincecanImplementInterfaceForAddress
does not exist, the fallback function is called instead, executed without throwing and returns1
. Thus making it appear as ifcanImplementInterfaceForAddress
returnedtrue
.
Rationale
This standards offers a way for any type of address (externally owned and contracts) to implement an interface and potentially delegate the implementation of the interface to a proxy contract. This delegation to a proxy contract is necessary for externally owned accounts and useful to avoid redeploying existing contracts such as multisigs and DAOs.
The registry can also act as a CBC-165 cache in order to save energy when looking up if a contract implements a specific CBC-165 interface.
This cache is intentionally kept simple, without automatic cache update or invalidation.
Anyone can easily and safely update the cache for any interface and any contract by calling the updateCBC165Cache
function.
The registry is deployed using a keyless deployment method relying on a single-use deployment address to ensure no one controls the registry, thereby ensuring trust.
Backward Compatibility
This standard is backward compatible with CBC-165, as both methods MAY be implemented without conflicting with each other.
Copyright
Copyright and related rights waived via CC0.